Many questions at the forefront of biology depend on the interactions of millions of single cells. My lab develops technologies for studying large numbers of single cells. In this talk, I will describe our approaches for sorting cells based on genomic and transcriptomic markers, and performing multi-omics analysis of single cells that allow simultaneous characterization of genomic, transcriptomic, and proteomic signatures. I will also describe how we are adapting these techniques to integrate genomics with other single cell measurement approaches, including imaging, mass spectrometry, and atomic force microscopy. Finally, I will describe how we are using these techniques to build cells into controlled consortia for microbiological studies and bottom-up tissue synthesis.
Learning Objectives:
1. Familiarization with microfluidic methods for single-cell multi-omics analysis
2. Application of microfluidics to bottom-up cell community assembly