Investigator, Howard Hughes Medical Institute, Professor of Biochemistry, Adjunct Professor of Genome Sciences, Physics, Computer Science, Chemical Engineering, and Bioengineering, University
I will describe recent advances in computational protein design which allow the generation of new protein structures and functions. I will describe the use of these methods to design ultra-stable idealized proteins, flu neutralizing proteins, high affinity ligand binding proteins, and self assembling protein nanomaterials. I will discuss possible applications to therapeutics, vaccines and diagnostics. I will also describe the contributions of the general public to these efforts through the distributed computing project Rosetta@home and the online protein folding and design game FoldIt.
A-TEEM spectroscopy is an emerging technique with huge potential for QC laboratories in the pharmaceutical and biopharmaceutical industries. We present a set of tools for A-TEEM spectroscopy...
De novo gene synthesis and protein expression are established technologies that can give access to nearly any target DNA or protein sequence, allowing for engineering of biologics. In this p...
To-date, proteomic analysis has been severely limited in scale and resolution. Analyzing protein samples using an intact, single-molecule approach holds th...
Histology laboratorians in the research world move fast, but those who perform cryosectioning know that these particular tissues require lighting speed and precision. Cryosectioning is the a...
Join us for an illuminating webinar as we delve into the realm of open automation with Inpeco, the global leader in Total Laboratory Automation. Discover how their groundbreaking s...
Loading Comments...
Please update your information
Certificate of Attendance
Thank you for choosing Labroots. Please note that a Certificate of Attendance does NOT count towards Continuing Education Credits.