Genetics: the study of genes, genetic variation, and heredity in living organisms. It is generally considered a field of biology, but intersects frequently with many other life sciences and is strongly linked with the study of information systems. The father of genetics is Gregor Mendel, a late 19th-century scientist and Augustinian friar. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring. He observed that organisms (pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.
Learning Objectives: 1. What is wrong with healthcare today 2. What kinds of omics and wearables data can be used to best predict disease risk and manage health...
The development of automated DNA sequencers using fluorescent di-deoxy nucleotide sequencing and capillary electrophoresis made it possible to generate the first draft sequences of the human...
Resolving the genetics of underlying Mendelian diseases as well as host immune responses to infectious diseases is an important prerequisite for understanding their biology and for ultimate...
Rapid access to high quality comprehensive coagulation test results is critical to patient care. In an environment where clinical laboratories constantly experience price and labor pressure,...
CRISPR-Cas9 gene editing is a powerful technique that enables genetic modification with greater speed and accuracy than previous approaches. In this webinar, Dr. Chen highlights the advantag...
As the spread of infectious diseases, current pandemic, and growing antimicrobial resistance (AMR) continues globally, next-generation sequencing (NGS) and specifically metagenomics became a...
With the completion of the human genome nearly two decades ago, consumers, patients, and physicians are wondering when genetic testing will go PRIME TIME. While the diagnostic utility of gen...
In this presentation Dr. Kevin Halling describes the use of RNA-seq testing for identifying clinically significant gene fusions in tumors that can be used to help establish diagnosis and gui...
Complex genomes, including the human genome, contain ‘dark’ regions that standard short-read sequencing technologies do not adequately resolve—overlooking many variants tha...
Realizing the promise of Precision Medicine requires both a deep understanding of the landscape of genomic evidence and an understanding of the molecular drivers that influence all aspects o...
As genomics plays an ever expanding role in healthcare and research, educational programs focused on applied genomics have not kept pace with the demand for trained students. In this talk, w...
In recent years Nanotherapeutics has revolutionized the healthcare strategies and envisioned to have a tremendous impact to offer better health facilities. It involves design, fabrication, r...
Achieving a diagnosis in rare disease patients can be challenging for even the most experienced clinician or scientist, creating a barrier to delivering truly personalised care. An exome seq...
The introduction of improved, more cost efficient target capture technologies has accelerated the adoption of Whole Exome Sequencing (WES) in clinical diagnostics. The ability to provide mor...
Estrogen metabolism is the ability to favorably excrete potentially toxic estrogens through urine and sweat. Impaired estrogen metabolism is associated with Endometriosis and Polycystic Ovar...
Graphene-based Biology-gated Transistors (Cardean Transistors) directly read molecular signals of active biology using advanced electronics. This proprietary tech breakthrough can be used as...
Triple-negative breast cancer (TNBC) is an aggressive disease that accounts for 10-20% of all breast cancer cases diagnosed annually in the U.S.1. Despite its prevalence, TNBC remains resist...
Within the clinical arena, the oncology community has led the way in the early adoption of next generation sequencing. NGS is in widespread use in clinical cancer research and is now beginni...
Careful and deliberate packaging of the genome is essential to ensuring correct and timely transcriptional programs. Chromatin conformation capture (3C and Hi-C) is a powerful approach for c...
The introduction of PacBio HiFi sequence reads, which are both long (up to 25 kb currently) and accurate (>99%) at the individual single-molecule sequence read level, has allowed for adva...
Karyomapping, a technique for preimplantation genetic diagnosis (PGD) of single gene disorders, involves using very few or single cells, and comes with challenges due to limited amounts of s...
Modern biomedical research is being driven by large scale genetic and proteomic research to identify new targets for the study of disease mechanisms. While these techniques have been incredi...
The versatility of standard PCR and qPCR is well known. Digital PCR is now taking this to a whole new level. The power of partitioning enables you to explore new frontiers which have been li...
Long-read DNA sequencing technologies such as the Pacific Biosciences (PacBio) and Oxford Nanopore (ONT) platforms, have demonstrated enhanced detection of genomic variation, including Singl...
Learning Objectives: 1. What is wrong with healthcare today 2. What kinds of omics and wearables data can be used to best predict disease risk and manage health...
The development of automated DNA sequencers using fluorescent di-deoxy nucleotide sequencing and capillary electrophoresis made it possible to generate the first draft sequences of the human...
Resolving the genetics of underlying Mendelian diseases as well as host immune responses to infectious diseases is an important prerequisite for understanding their biology and for ultimate...
Rapid access to high quality comprehensive coagulation test results is critical to patient care. In an environment where clinical laboratories constantly experience price and labor pressure,...
CRISPR-Cas9 gene editing is a powerful technique that enables genetic modification with greater speed and accuracy than previous approaches. In this webinar, Dr. Chen highlights the advantag...
As the spread of infectious diseases, current pandemic, and growing antimicrobial resistance (AMR) continues globally, next-generation sequencing (NGS) and specifically metagenomics became a...
With the completion of the human genome nearly two decades ago, consumers, patients, and physicians are wondering when genetic testing will go PRIME TIME. While the diagnostic utility of gen...
In this presentation Dr. Kevin Halling describes the use of RNA-seq testing for identifying clinically significant gene fusions in tumors that can be used to help establish diagnosis and gui...
Complex genomes, including the human genome, contain ‘dark’ regions that standard short-read sequencing technologies do not adequately resolve—overlooking many variants tha...
Realizing the promise of Precision Medicine requires both a deep understanding of the landscape of genomic evidence and an understanding of the molecular drivers that influence all aspects o...
As genomics plays an ever expanding role in healthcare and research, educational programs focused on applied genomics have not kept pace with the demand for trained students. In this talk, w...
In recent years Nanotherapeutics has revolutionized the healthcare strategies and envisioned to have a tremendous impact to offer better health facilities. It involves design, fabrication, r...
Achieving a diagnosis in rare disease patients can be challenging for even the most experienced clinician or scientist, creating a barrier to delivering truly personalised care. An exome seq...
The introduction of improved, more cost efficient target capture technologies has accelerated the adoption of Whole Exome Sequencing (WES) in clinical diagnostics. The ability to provide mor...
Estrogen metabolism is the ability to favorably excrete potentially toxic estrogens through urine and sweat. Impaired estrogen metabolism is associated with Endometriosis and Polycystic Ovar...
Graphene-based Biology-gated Transistors (Cardean Transistors) directly read molecular signals of active biology using advanced electronics. This proprietary tech breakthrough can be used as...
Triple-negative breast cancer (TNBC) is an aggressive disease that accounts for 10-20% of all breast cancer cases diagnosed annually in the U.S.1. Despite its prevalence, TNBC remains resist...
Within the clinical arena, the oncology community has led the way in the early adoption of next generation sequencing. NGS is in widespread use in clinical cancer research and is now beginni...
Careful and deliberate packaging of the genome is essential to ensuring correct and timely transcriptional programs. Chromatin conformation capture (3C and Hi-C) is a powerful approach for c...
The introduction of PacBio HiFi sequence reads, which are both long (up to 25 kb currently) and accurate (>99%) at the individual single-molecule sequence read level, has allowed for adva...
Karyomapping, a technique for preimplantation genetic diagnosis (PGD) of single gene disorders, involves using very few or single cells, and comes with challenges due to limited amounts of s...
Modern biomedical research is being driven by large scale genetic and proteomic research to identify new targets for the study of disease mechanisms. While these techniques have been incredi...
The versatility of standard PCR and qPCR is well known. Digital PCR is now taking this to a whole new level. The power of partitioning enables you to explore new frontiers which have been li...
Long-read DNA sequencing technologies such as the Pacific Biosciences (PacBio) and Oxford Nanopore (ONT) platforms, have demonstrated enhanced detection of genomic variation, including Singl...