To tackle this problem, the scientists decided to take the Calvin cycle - the metabolic pathway for carbon fixation and sugar production – and insert it into E. coli, a bacteria known to consume sugar and release carbon dioxide. The Calvin cycle in described in the video below.
The bacteria weren’t very cooperative though. While they did produce functional enzymes needed for the Calvin cycle, they didn’t want to eat the carbon dioxide. They instead turned to a different sugar supply. "Of course, we were dealing with an organism that has evolved over millions of years to eat sugar, not CO2," said first author of the study, Niv Antonovsky. "So we turned to evolution to help us create the system we intended."
The team created tanks called "chemostats" for growing the bacteria. At first the bacteria in the tanks were offered carbon dioxide along with a large amount of pyruvate, an energy source, supplemented with just enough sugar to survive. Thus the microbes learned, through environmental pressures and stress, to develop an appetite for carbon dioxide. It did take three months for the bacteria to begin to thrive on their new energy source, but they were finally ready to be weaned from sugar completely and live on carbon dioxide and pyruvate alone. Through isotope labeling, it was confirmed that the bacteria were in fact using carbon dioxide to make both a significant portion of their body mass, and all the sugars required to make the cell.
Image from Cell
Milo remarked, "The ability to program or reengineer E. coli to fix carbon could give researchers a new toolbox for studying and improving this basic process." While the bacteria currently release carbon dioxide back into the atmosphere, the researchers hope that in the future their work could be applied to creating microbes capable of absorbing atmospheric carbon dioxide or to engineering crops that contain carbon fixing pathways, which may result in increased yields and better adaption to feeding the world.
Sources: Science Daily via Weizmann Institute of Science, Cell