Antisense DNA runs complementary to the sense strand of DNA used to create a messenger RNA copy, so the idea is that an antisense DNA drug can attach itself to the faulty mRNA copy and eliminate the problematic protein before it’s even made.
There are major caveats to this approach, unfortunately. Apparently synthetic DNA has a hard time staying stuck to the mRNA it’s opposing, and frees up the mRNA to make the defective protein. Making the DNA stickier is not a mystery to scientists, said Shiyue Fang, a Professor of Chemistry at Michigan Technological University and senior author of the new work. If some groups of atoms that have a partial positive charge - electrophiles - are added, the result is a stickier molecule. Because the electrophiles react with groups in the RNA that have a partial negative charge - nucleophiles - a powerful covalent bond is thus formed; the RNA then gets locked down for good.
Until now, synthetic DNA had to undergo a final soak in ammonia to clean off the chemical ingredients that are required for assembly of synthetic DNA. Not only does the ammonia neutralize the electrophiles, it gets rid of chemical linkers and protective groups. Alternative processes are unreliable, expensive and often require toxic chemicals.
The process developed by Fang’s team uses alternative chemicals for the linking and protective actions that wash away much more easily using a solution that doesn’t harm electrophiles and is relatively innocuous. Other advantages of the new tool include low cost and improved safety, such that it will be much better for manufacturing important drugs. This method opens up the door to biochemists and microbiologists who can now use synthetic DNA for other potential applications.
Sources: phys.org via Michigan Technological University, Organic Letters