"Using this approach, we predicated an unexpected role for interferon gamma (IFN-γ), an important cytokine secreted by T lymphocytes, in promoting social brain functions," explained Vladimir Litvak, a study author and an Assistant Professor of Microbiology and Physiological systems at UMMS. "Our findings contribute to a deeper understanding of social dysfunction in neurological disorders, such as autism and schizophrenia, and may open new avenues for therapeutic approaches."
The research team determined that in several organisms, including rodents, fish and flies, IFN-γ signaling is elevated in social contexts. Using mice that are deficient in adaptive immunity, they found that those immunocompromised mice lacked social preference for a mouse over an object and those mice did not display anxiety, motor, or olfactory deficits.
Their findings could indicate that the IFN-γ signaling pathway mediates a link between social behavior and an efficient anti-pathogen response that could be very important to herd immunity.
To interrogate the mouse brain directly, researchers at the University of Virginia (UVA) collaborated in the work. The Chair of Neuroscience at the UVA School of Medicine, Jonathan Kipnis, showed when IFN-γ is blocked in mice, their brains become hyperactive and they displayed atypical social behavior. Brain activity and social behavior were normalized when IFN-γ-signaling in the brain was restored. The work done there is discussed in the video below.
The scientists note that while a malfunctioning immune system may be responsible for "social deficits in numerous neurological and psychiatric disorders," exactly what that means for specific neurological conditions like autism requires more research.
"For the first time we have a platform capable of systematically investigating the complex connections between immune signaling and various brain functions," said Litvak. "I believe that anybody can use our technology as a template to investigate the involvement of various immune components in different brain dysfunctions."
Sources: AAAS/Eurekalert! via University of Massachusetts Medical School, Nature, NIH/NIAID