Eighteen people with a few types of cancers that are no longer responding to any current treatments will participate in the trial. The scientists plan to remove T cells, a type of white blood cell, from the patients and perform three CRISPR edits on them. First will be a gene insertion that causes T cells to target cancer cells. A benign virus will give the T cells a receptor for a protein, NY-ESO-1, usually present on tumor cells. When the T cells are reinfused into the patient, they should then attack tumors showing that NY-ESO-1 protein. This part of the plan has already been tested in people with multiple myeloma. While most tumors did initially shrink, the edited T cells eventually lost effectiveness and stopped proliferating.
“It’s an important new approach. We’re going to learn a lot from this. And hopefully it will form the basis of new types of therapy,” says one of three RAC members who reviewed the protocol, clinical oncologist Michael Atkins of Georgetown University.
UPenn will have to overcome an unfortunate history with gene therapy. In 1999 a young man in a trial there, Jessie Gelsinger, died participating. “Penn has a very extensive conflict and has a history,” says a bioethicist at Northwestern University, Laurie Zoloth.
One major concern of the committee arose from the financial interest UPenn has in the trial. Carl June of UPenn is the trial’s scientific adviser, and he holds several patents on gene therapy as well as having connections to Novartis pharmaceutical company. The RAC made several suggestions for avoiding such conflicts, and June claimed the university was taking care to manage such issues. RAC members have said they are being very careful with this proposal.
June thinks one of the biggest obstacles to success will be the potential for 'off-target effects' or the unintended editing of genes that are not targeted in the study. It is also possible that the immune system will mount an attack on the edited cells.
Mildred Cho, a bioethicist at Stanford University in California and an RAC member, thinks the time is right to move forward. “Often we have to take the leap of faith.”
“CRISPR technology provides an opportunity to profoundly manipulate cells,” according to a statement provided by Jenifer Haslip, a spokesperson for the Parker’s nonprofit foundation. “We’re excited to be part of the first clinical effort in the United States to combine these two powerful therapeutic approaches to treat a devastating disease like cancer."
Sources: Science ScienceInsider, Nature News, Parker.org, MIT Technology Review